Iceberg-capsize tsunamigenesis
نویسندگان
چکیده
Calving from the floating termini of outlet glaciers and ice shelves is just the beginning of an interesting chain of events that can subsequently have important impacts on human life and property. Immediately after calving, many icebergs capsize (roll over by 90◦) due to the instability of their initial geometry. As icebergs melt and respond to the cumulative effects of ocean swell, they can also reorient their mass distribution by further capsize and fragmentation. These processes release gravitational potential energy and can produce impulsive large-amplitude surface-gravity waves known as tsunamis (a term derived from the Japanese language). Iceberg-capsize tsunamis in Greenland fjords can be of sufficient amplitude to threaten human life and cause destruction of property in settlements. Iceberg-capsize tsunamis may also have a role in determining why some ice shelves along the Antarctic Peninsula disintegrate ‘explosively’ in response to general environmental warming. To quantify iceberg tsunami hazards we investigate iceberg-capsize energetics, and develop a rule relating tsunami height to iceberg thickness. This rule suggests that the open-water tsunami height (located far from the iceberg and from shorelines where the height can be amplified) has an upper limit of 0.01H where H is the initial vertical dimension of the iceberg.
منابع مشابه
A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration
Potential energy released from the capsize of ice-shelf fragments (icebergs) is the immediate driver of the brief explosive phase of ice-shelf disintegration along the Antarctic Peninsula (e.g. the Larsen A, Larsen B and Wilkins ice shelves). The majority of this energy powers the rapidly expanding plume of ice-shelf fragments that expands outward into the open ocean; a smaller fraction of this...
متن کاملIce sheets. Reverse glacier motion during iceberg calving and the cause of glacial earthquakes.
Nearly half of Greenland's mass loss occurs through iceberg calving, but the physical mechanisms operating during calving are poorly known and in situ observations are sparse. We show that calving at Greenland's Helheim Glacier causes a minutes-long reversal of the glacier's horizontal flow and a downward deflection of its terminus. The reverse motion results from the horizontal force caused by...
متن کاملDynamic Stability of Ships in Waves
A method is proposed for evaluating the overall dynamic stability of an intact vessel in a seaway. We use an existing ship motions program to study the motion of a vessel with a certain loading condition, speed and heading, in given wave conditions. A deterministic method is discussed for looking at the stability of a vessel over a wide range of these parameters. This is done with a view to giv...
متن کاملLimits to Control of Ship Capsize Using Cycloidal Propellers Compared to Active Fins
A non-linear mathematical model, for the roll-yaw behaviour of a ship, is used to predict the prevention of capsize of a small ship. The problem was simulated using the digital package SIMULINK. Simulated responses of the ship with simple hydrodynamic fin stabilisers show that capsize could have been prevented by this means in waves up to 7 m in height. Active control using a simple full span c...
متن کاملUse of Lyapunov Exponents to Predict Chaotic Vessel Motions
It is the aim of this paper to further the use of Lyapunov and local Lyapunov exponent methods for analyzing phenomena involving nonlinear vessel dynamics. Lyapunov exponents represent a means to measure the rate of convergence or divergence of nearby trajectories thus denoting chaos and possibly leading to the onset of conditions that produce capsize. The work developed here makes use of Lyapu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011